常用算法(数据挖掘常用算法)

skyadmin 52 2022-11-12

本文目录一览:

机器学习一般常用的算法有哪些?

机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。

一、线性回归

一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。

二、Logistic 回归

它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。

三、线性判别分析(LDA)

在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。

四、决策树

决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。

五、朴素贝叶斯

其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。

六、K近邻算法

K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。

七、Boosting 和 AdaBoost

首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显著的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。

八、学习向量量化算法(简称 LVQ)

学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求

作为一个程序员,有哪些常用的算法?

常用的算法有:递推法、贪心法、列举法、递归法、分治法和模拟法

原则:1. 扎实的基础。数据结构、离散数学、编译原理,这些是所有计算机科学的基础,如果不掌握他们,很难写出高水平的程序。据我的观察,学计算机专业的人比学其他专业的人更能写出高质量的软件。程序人人都会写,但当你发现写到一定程度很难再提高的时候,就应该想想是不是要回过头来学学这些最基本的理论。不要一开始就去学OOP,即使你再精通OOP,遇到一些基本算法的时候可能也会束手无策。

2. 丰富的想象力。不要拘泥于固定的思维方式,遇到问题的时候要多想几种解决问题的方案,试试别人从没想过的方法。丰富的想象力是建立在丰富的知识的基础上,除计算机以外,多涉猎其他的学科,比如天文、物理、数学等等。另外,多看科幻电影也是一个很好的途径。

3. 最简单的是最好的。这也许是所有科学都遵循的一条准则,如此复杂的质能互换原理在爱因斯坦眼里不过是一个简单得不能再简单的公式:E=mc2。简单的方法更容易被人理解,更容易实现,也更容易维护。遇到问题时要优先考虑最简单的方案,只有简单方案不能满足要求时再考虑复杂的方案。

4. 不钻牛角尖。当你遇到障碍的时候,不妨暂时远离电脑,看看窗外的风景,听听轻音乐,和朋友聊聊天。当我遇到难题的时候会去玩游戏,而且是那种极暴力的打斗类游戏,当负责游戏的那部分大脑细胞极度亢奋的时候,负责编程的那部分大脑细胞就得到了充分的休息。当重新开始工作的时候,我会发现那些难题现在竟然可以迎刃而解。

5. 对答案的渴求。人类自然科学的发展史就是一个渴求得到答案的过程,即使只能知道答案的一小部分也值得我们去付出。只要你坚定信念,一定要找到问题的答案,你才会付出精力去探索,即使最后没有得到答案,在过程中你也会学到很多东西。

6. 多与别人交流。三人行必有我师,也许在一次和别人不经意的谈话中,就可以迸出灵感的火花。多上上网,看看别人对同一问题的看法,会给你很大的启发。

7. 良好的编程风格。注意养成良好的习惯,代码的缩进编排,变量的命名规则要始终保持一致。大家都知道如何排除代码中错误,却往往忽视了对注释的排错。注释是程序的一个重要组成部分,它可以使你的代码更容易理解,而如果代码已经清楚地表达了你的思想,就不必再加注释了,如果注释和代码不一致,那就更加糟糕。

8. 韧性和毅力。这也许是"高手"和一般程序员最大的区别。A good programming is 99 weat and 1 ffee。高手们并不是天才,他们是在无数个日日夜夜中磨练出来的。成功能给我们带来无比的喜悦,但过程却是无比的枯燥乏味。你不妨做个测试,找个10000以内的素数表,把它们全都抄下来,然后再检查三遍,如果能够不间断地完成这一工作,你就可以满足这一条。

希望对你有帮助

10个常用算法

原理:

二分法查找,也称为折半法,是一种在有序数组中查找特定元素的搜索算法。

一般步骤:

(1)确定该区间的中间位置K;

(2)将查找的值T与array[k]比较。

若相等,查找成功返回此位置;否则确定新的查找区域,继续二分查找。每一次查找与中间值比较,可以确定是否查找成功,不成功当前查找区间将缩小一半,递归查找即可。

原理:

一种通过重复将问题分解为同类的子问题而解决问题的方法

典型例子:

斐波那契数列

描述: 斐波那契数列 指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368.....自然中的斐波那契数列") 自然中的斐波那契数列,这个数列从第3项开始,每一项都等于前两项之和。

解决方式:

原理:

在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。

但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

解决问题一般步骤:

1、 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。

2 、确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。

3 、以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

典型例子:

八皇后问题

描述:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

解决方式:

概念:

将杂乱无章的数据元素,通过一定的方法按关键字顺序排列的过程叫做排序。

分类:

非稳定排序算法:快速排序、希尔排序、堆排序、直接选择排序

稳定的排序算法:基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序

十个常用排序算法

利用计算机的高性能来有目的的穷举一个问题解空间的部分或所有的可能情况,从而求出问题的解的一种方法。

分类:

枚举算法、深度优先搜索、广度优先搜索、A*算法、回溯算法、蒙特卡洛树搜索、散列函数等算法。

将一个数据转换为一个标志,这个标志和源数据的每一个字节都有十分紧密的关系。

很难找到逆向规律

只要符合散列思想的算法都可以被称为是Hash算法

对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称为 碰撞 。

原理

在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在 某种意义上的局部最优解 。

从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解。每一步只考虑一个数据,他的选取应该满足局部优化的条件。若下一个数据和部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加算法停止。

一种近似算法

一般步骤:

1、建立数学模型来描述问题;

2、把求解的问题分成若干个子问题;

3、对每一子问题求解,得到子问题的局部最优解;

4、把子问题的解局部最优解合成原来解问题的一个解。

典型例子:

0/1背包问题

马踏棋盘

均分纸牌

例题:

概念:

分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

一般步骤:

(1)分解,将要解决的问题划分成若干规模较小的同类问题;

(2)求解,当子问题划分得足够小时,用较简单的方法解决;

(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

典型例子:

排序中:归并排序、堆排序、快速排序;

实例:找伪币、求最值、棋盘覆盖

概念:

用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。

动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。

举例:

线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;

区域动规:石子合并, 加分二叉树,统计单词个数,炮兵布阵等;

树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等;

背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶(同济)等;

应用实例:

最短路径问题 ,项目管理,网络流优化等;

;fromid=15742703fr=aladdin

概念:

在一个给定的字符文本内搜寻出自己想要找的一个字符串,平常所用的各种文本编辑器里的ctrl+F大多就是使用的这些字符匹配算法。

分类:

KMP、BM、Sunday、Horspool、RK

参考:

程序员开发用到的十大基本算法

算法一:快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:

1 从数列中挑出一个元素,称为 “基准”(pivot),

2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:

1.创建一个堆H[0..n-1]

2.把堆首(最大值)和堆尾互换

3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置

4.重复步骤2,直到堆的尺寸为1

算法三:归并排序

归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

算法四:二分查找算法

二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

算法五:BFPRT(线性查找算法)

BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。

算法步骤:

终止条件:n=1时,返回的即是i小元素。

算法六:DFS(深度优先搜索)

深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

算法步骤:

上述描述可能比较抽象,举个实例:

DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

算法七:BFS(广度优先搜索)

广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

算法八:Dijkstra算法

戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

算法步骤:

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

算法九:动态规划算法

动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

算法步骤:

算法十:朴素贝叶斯分类算法

朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。

数据挖掘常用算法有哪些?

1、 朴素贝叶斯

朴素贝叶斯(NB)属于生成式模型(即需要计算特征与类的联合概率分布),计算过程非常简单,只是做了一堆计数。NB有一个条件独立性假设,即在类已知的条件下,各个特征之间的分布是独立的。这样朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中的R来讲,就是特征冗余。

2、逻辑回归(logistic regression)

逻辑回归是一个分类方法,属于判别式模型,有很多正则化模型的方法(L0,L1,L2),而且不必像在用朴素贝叶斯那样担心特征是否相关。与决策树与SVM相比,还会得到一个不错的概率解释,甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法online gradient descent)。如果需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者希望以后将更多的训练数据快速整合到模型中去,那么可以使用它。

3、 线性回归

线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化。

4、最近邻算法——KNN

KNN即最近邻算法,其主要过程为:计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);对上面所有的距离值进行排序;选前k个最小距离的样本;根据这k个样本的标签进行投票,得到最后的分类类别;如何选择一个最佳的K值,这取决于数据。

5、决策树

决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

6、SVM支持向量机

高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。

c语言常用算法有哪些

0) 穷举法

穷举法简单粗暴,没有什么问题是搞不定的,只要你肯花时间。同时对于小数据量,穷举法就是最优秀的算法。就像太祖长拳,简单,人人都能会,能解决问题,但是与真正的高手过招,就颓了。

1) 贪婪算法

贪婪算法可以获取到问题的局部最优解,不一定能获取到全局最优解,同时获取最优解的好坏要看贪婪策略的选择。特点就是简单,能获取到局部最优解。就像打狗棍法,同一套棍法,洪七公和鲁有脚的水平就差太多了,因此同样是贪婪算法,不同的贪婪策略会导致得到差异非常大的结果。

2) 动态规划算法

当最优化问题具有重复子问题和最优子结构的时候,就是动态规划出场的时候了。动态规划算法的核心就是提供了一个memory来缓存重复子问题的结果,避免了递归的过程中的大量的重复计算。动态规划算法的难点在于怎么将问题转化为能够利用动态规划算法来解决。当重复子问题的数目比较小时,动态规划的效果也会很差。如果问题存在大量的重复子问题的话,那么动态规划对于效率的提高是非常恐怖的。就像斗转星移武功,对手强它也会比较强,对手若,他也会比较弱。

3)分治算法

分治算法的逻辑更简单了,就是一个词,分而治之。分治算法就是把一个大的问题分为若干个子问题,然后在子问题继续向下分,一直到base cases,通过base cases的解决,一步步向上,最终解决最初的大问题。分治算法是递归的典型应用。

4) 回溯算法

回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个

分岔路,在选一条路走,一直这样递归下去,直到遍历万所有的路径。八皇后问题是回溯算法的一个经典问题,还有一个经典的应用场景就是迷宫问题。

5) 分支限界算法

回溯算法是深度优先,那么分支限界法就是广度优先的一个经典的例子。回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解(一般来说要获取最优解)。

关于常用算法和数据挖掘常用算法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注云尚网络www.ysfad.net。

上一篇:阿里云内部邮箱(阿里云邮箱入口)
下一篇:保定公司网站建设(保定公司做网站)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~