南京排名推广(南京产品推广)
30
2023-05-18
本文目录一览:
芯片分析仪器有: 1 C-SAM(超声波扫描显微镜),无损检查:1.材料内部的晶格结构,杂质颗粒.夹杂物.沉淀物.2. 内部裂纹. 3.分层缺陷.4.空洞,气泡,空隙等. 德国 2 X-Ray(这两者是芯片发生失效后首先使用的非破坏性分析手段),德国Feinfocus 微焦点Xray用途:半导体BGA,线路板等内部位移的分析 ;利于判别空焊,虚焊等BGA焊接缺陷. 参数:标准检测分辨率<500纳米 ; 几何放大倍数: 2000 倍 最大放大倍数: 10000倍 ; 辐射小: 每小时低于1 μSv ; 电压: 160 KV, 开放式射线管设计 防碰撞设计;BGA和SMT(QFP)自动分析软件,空隙计算软件,通用缺陷自动识别软件和视频记录。这些特点非常适合进行各种二维检测和三维微焦点计算机断层扫描(μCT)应用。 Feinfocus微焦点X射线(德国) Y.COUGAR F/A系列可选配样品旋转360度和倾斜60度装置。 Y.COUGAR SMT 系列配置140度倾斜轴样品,选模樱配360度旋转台 3 SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸), 日本电子 4 EMMI微光显微镜/OBIRCH镭射光束诱发阻抗值变化测试/LC 液晶热点侦测(这三者属于常用漏电流路径分颂山析手段,寻找发热点,LC要借助探针台,示波器) 5 FIB做一些电路修改; 6 Probe Station 探针台/Probing Test 探针测试,ESD/Latch-up静电放电/闩锁效用测试(有些客旦樱丛户是在芯片流入客户端之前就进行这两项可靠度测试,有些客户是失效发生后才想到要筛取良片送验)这些已经提到了多数常用手段。失效分析前还有一些必要的样品处理过程,取die,decap(开封,开帽),研磨,去金球 De-gold bump,去层,染色等,有些也需要相应的仪器机台,SEM可以查看die表面,SAM以及X-Ray观察封装内部情况以及分层失效。 除了常用手段之外还有其他一些失效分析手段,原子力显微镜AFM ,二次离子质谱 SIMS,飞行时间质谱TOF - SIMS ,透射电镜TEM , 场发射电镜,场发射扫描俄歇探针, X 光电子能谱XPS ,L-I-V测试系统,能量损失 X 光微区分析系统等很多手段,不过这些项目不是很常用。 FA步骤: 2 非破坏性分析:主要是超声波扫描显微镜(C-SAM)--看有没delamination,xray--看内部结构,等等; 3 电测:主要工具,万用表,示波器,sony tek370a,现在好象是370b了; 4 破坏性分析:机械decap,化学 decap芯片开封机 半导体器件芯片失效分析 芯片内部分层,孔洞气泡失效分析 C-SAM的叫法很多有,扫描声波显微镜或声扫描显微镜或扫描声学显微镜或超声波扫描显微镜(Scanning acoustic microscope)总概c-sam(sat)测试。 微焦点Xray用途:半导体BGA,线路板等内部位移的分析 ;利于判别空焊,虚焊等BGA焊接缺陷. 参数:标准检测分辨率<500纳米 ; 几何放大倍数: 2000 倍 最大放大倍数: 10000倍 ; 辐射小: 每小时低于1 μSv ; 电压: 160 KV, 开放式射线管设计防碰撞设计;BGA和SMT(QFP)自动分析软件,空隙计算软件,通用缺陷自动识别软件和视频记录。这些特点非常适合进行各种二维检测和三维微焦点计算机断层扫描(μCT)应用。芯片开封机DECAP主要用于芯片开封验证SAM,XRAY的结果。
进行元渗陪素分析的信号主要是作用区发射的元素特征X射戚喊锋线,俄歇电子,
阴极荧光,背散射电子等,特征能量损失电子。
SEM 常常使用:EDS,WDS 分光特征X射线; 俄歇电子需要超高真空环境,往往以俄歇电子谱仪的商品出现,也可归入扫描电镜范畴;背散射电子携带微区不同平均原子序数区域的反差信息,定性的了解原子序数高低或者材料密度分布;阴极荧光光谱范围在紫外,可见或红外波段所发射的电磁辐射,这种现象可以被用来检测矿高晌物,半导体和生物样品中痕量元素(ppm级别,用X射线波谱WDS或者X射线能谱EDS都是不能实现的)的分布。
TEM常使用特征x射线和特征能量损失电子,
11月24日,万众瞩目的“嫦娥五号”一飞冲天,成功登月,12月17日凌晨嫦娥五号返回器2公斤左右的月球土壤样品在内蒙古预定区域安全着陆,圆满完成了我国首次地外天体采样返回之旅。这不仅意味着中国航天技术取得巨大飞跃,而中国也将成为继美国和苏联之后,全世界第三个从月球带回月壤样品的国家。
中国嫦娥带回的月壤为何如此珍贵?为什么所有国家都想要?氦-3又是什么宝物?为何说会引发下一次工业革命?
人类如果想要走出太阳系,那中唤梁必须先能够在月亮上生存下去,这铁定是将来航卖运天航空发展的最基本目标,谁能抢先研究月球土壤,谁就能提前抢得先机。氦-3则是核聚变反应的最理想原材料,不会产生辐射。也许下一次工业革命,就隐藏在这些月壤里。
从1969年到1972年,美国先后进行了7次载人登月,成功了6次,一共带回了超过382千克的月球土壤。前苏联3次登月总计带回约330克的月壤。嫦娥五号此次从月球带回2千克的月壤,链山已经让我国成为排名第二国家,珍贵的月亮“土特产”为我们了解月球,认识地月系统,提供非常宝贵的数据支持。
月球化学的研究技术手段有哪些?NTEK带您了解月壤元素分析的常用技术手段:
快速无损定性分析——X射线荧光光谱仪
在不破坏材料的情况下,X射线照射在样品表面,样品中元素的内层电子向外跃迁,被激发电子返回基态的时候,放射出次级X射线(荧光),不同元素的特征X射线具有不同的能量或波长,根据不同的特征X射线实现对材料的元素分析。在月壤分析中,可以在不破坏月壤样品的情况下对元素进行定性和半定量分析,是月壤元素分析必不可少的设备。
微痕量元素的定量分析——ICP-OES
材料产品经过硝酸、盐酸等强酸的消解,成为水溶液后,在最高10000K温度的等离子体中原子化、离子化,检测元素发射的特征谱线,对元素进行定性、定量检测,实现微量和痕量级分析。通过XRF对月壤元素进行定性分析后,可以通过ICP-OES对月壤中微量元素进行定量分析,确认月壤中元素的精确含量。
探究月壤的晶体结构——X射线衍射仪(XRD)
XRF、ICP-OES等仪器可以分析出材料的元素组成,但是无法对材料中元素的存在状态和化合物信息进行分析。X射线衍射仪可实现材料相的定性、定量和晶粒尺寸等物理量的分析测定。将材料成分中化合物含量、结构等一一分析出来。通过X射线衍射仪可对月壤中矿物种类、含量和晶体结果完整的呈现给您。
月壤材料化合物的含量分析——GC-MS仪器
气相色谱具有极强的分离能力,质谱对未知化合物具有独特的鉴定能力,且灵敏度极高。通过气相色谱-质谱联用仪对材料中的有机物进行定性和定量分析,确定材料中有机物的含量,帮助材料主成分的定量。通过GC-MS分析,可以检测月壤中部分化合物的含量,助力全面解析月壤成分。
探究分析月壤材料的显微结构——SEM/EDS仪器
扫描电子显微镜/X-射线能谱仪( SEM/EDS ) SEM是用细聚焦的高能电子束轰击试样表面,通过电子与试样相互作用产生的二次电子,背闪射电子信息可对月壤中矿物质进行形貌观察。
EDS通过测量电子与试样相互作用所产生的特征X射线,根据被激发的X射线光子的能量对月壤中物质进行元素定性分析,并根据X射线强度进行元素定量分析。
探究月壤材料的分子结构——FTIR仪器
FTIR一般指傅立叶变换红外吸收光谱仪,其原理是物质分子中的基团吸收红外光,产生特征红外吸收谱带,通过这些特征红外吸收谱带进行可对月壤中物质进行分子结构和化学组成定性分析。
月壤材料的热稳定性分析——热重分析仪(TGA)
TGA法是测量样品质量随温度或时间的变化关系。通过分析热重曲线,我们可以知道月壤中可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物与质量相联系的信息。
探究月壤的热力学性能——差示扫描量热仪(DSC)
DSC是研究在温度程序控制下物质随温度的变化其物理量的变化,即通过程序控制温度的变化,在温度变化的同时,测量试样和参比物的功率差与温度的关系。此法可以用来研究月壤中物质的分子结构、聚集态结构。并可针对月壤中单一物质进行分析其熔点,结晶度,玻璃化转变温度,氧化诱导时间,比热容,纯度等。
月球的 探索 只是我们迈出去的一步,人类将走的更远。月壤分析研究当然不局限于以上分析仪器,从嫦娥升空奔月、落地勘探、月壤采集到返回地球,全过程使用了许多科学仪器,帮助人类了解、 探索 月球及太空中隐藏着无限的奥秘。
扫描电镜在研究复合材料中的应用扫描电镜是利用细聚焦电子束在样品表面扫描时激发出来的各种物理信号来调制成像的。扫描电镜是一种多功能的仪器、具有很多优越的性能、是用途最为广泛的一种仪器,它具有很高的分辨率。是复合材料研究中常用的分析测试仪器。1扫描电镜1.1扫描电镜的发展扫描电镜的设计思想早在1935年便已提出,1942年在实验室制成第一台扫描电镜,但因受各种技术条件的限制,进展一直很慢。 1965年,在各项基础技术有了很大进展的前提下才在英国诞生了第一台实用化的商品仪器。此后,荷兰、美国、西德也相继研制出各种型号的扫描电镜,日本二战后在美国的支持下生产出扫描电镜,中国则在20世纪70年代生产出自己的扫描电镜。前期近20年,扫描电镜主要是在提高分辨率方面取得了较大进展。80年代末期,各厂家的扫描电镜的二次电子像分辨率均已达到4.5nm。在提高分辨率方面各厂家主要采取了如下措施: (1)降低透镜球像差系数,以获得小束斑;(2)增强照明源即提高电子枪亮度(如采用LaB6或场发射电子枪);(3)提高真空度和检测系统的接收效率;(4)尽可能减小外界振动干扰。目前,采用钨灯丝电子枪扫描电镜的分辨率最高可以达到3.0nm;采用场发射电子枪扫描电镜的分辨率可达1nm。1.2扫描电子显微镜的组成部分扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。每个部分都有其相应的作用。1) 真空系统真空系统主要包括真空泵和真空柱两部分。其中真空柱是一个密封的柱形容器,而真空泵用来在真空柱内产生真空。真空泵有机械敏唤泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。成像系统和电子束系统均内置在真空柱中。真空柱底端即为密封室,用于放置样品。之所以要用真空,主要基于以下两点原因:电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用SEM时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。
2)电子束系统电子束系统由电子枪和电磁透镜两部分组成,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成像。电子枪用于产生电子,主要有两大类,共三种。一类是利用场致发射效应产生电子,称为场致发射电子枪。这种电子枪极其昂贵,在十万美元以上,且需要极高真空。另一类则是利用热发射效应产生电子,有钨枪和六硼化镧枪两种。热发射电子需要电磁透镜来成束,所以在用热发射电子枪的SEM上,电磁透镜必不可少。通常会装配两组汇聚透镜:顾名思义,汇聚透镜用汇聚电子束,装配在真空柱中,衡运位于电子枪之下。通常不止一个,并有一组汇聚光圈与之相配。但汇聚透镜仅仅用于汇聚电子束,与成像会焦无关。物镜为真空柱中最下方桥拦凯的一个电磁透镜,它负责将电子束的焦点汇聚到样品表面。3)成像系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生次级电子、背散射电子、欧革电子以及X射线等一系列信号。所以需要不同的探测器譬如次级电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。虽然X射线信号不能用于成像,但习惯上,仍然将X射线分析系统划分到成像系统中。1.3扫描电镜的工作原理扫描电镜的工作原理如图1所示。图1 扫描电镜原理图扫描电镜由电子枪发射出来的电子束,在加速电压的作用下,经过磁透镜系统汇聚,形成直径为5nm,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子束聚焦在样品表面。在末级透镜上边装有扫描线圈,在它的作用下使电子束在样品表面扫描。由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背反射电子、吸收电子、X射线、俄歇电子、阴极发光和透射电子等。这些信号被相应的接收器接收,经放大后送到显像管的栅极上,调制显像管的亮度。由于经过扫描线圈上的电流是与显像管相应的亮度一一对应,也就是说,电子束打到样品上一点时,在显像管荧光屏上就出现一个亮点。扫描电镜就是这样采用逐点成像的方法,把样品表面不同的特征,按顺序,成比例地转换为视频信号,完成一帧图像,从而使我们在荧光屏上观察到样品表面的各种特征图像。
1.4 扫描电镜的附件扫描电镜一般都配有波谱仪或者能谱仪。波谱仪是利用布拉格方程2dsin = ,从试样激发出了X射线经适当的晶体分光,波长不同的特征X射线将有不同的衍射角2 。波谱仪是微区成分分析的有力工具。波谱仪的波长分辨率是很高的,但是由于X射线的利用率很低,所以它使用范围有限。能谱仪是利用X光量子的能量不同来进行元素分析的方法,对于某一种元素的X光量子从主量子数胃n1的层跃迁到主量子数为n2的层上时,有特定的能量 = n1- n2。能谱仪的分辨率高,分析速度快,但分辨本领差,经常有谱线重叠现象,而且对于低含量的元素分析准确度很差。2.复合材料2.1.复合材料的定义复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。2.2.复合材料的特点复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到热膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合, 使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。
2.3.复合材料的应用复合材料的主要应用领域有:①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的 壳体、发动机壳体、航天飞机结构件等。②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X射线特性,可用于制造医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运动器件和用作建筑材料等。3.扫描电镜在复合材料中的应用3.1.材料断口的分析扫描电镜的另一个重要特点是景深大,图象富立体感。扫描电镜的焦深比透射电子显微镜大10倍,比光学显微镜大几百倍。由于图象景深大,故所得扫描电子象富有立体感,具有三维形态,能够提供比其他显微镜多得多的信息,这个特点对使用者很有价值。扫描电镜所显示的断口形貌从深层次,高景深的角度呈现材料断裂的本质,在教学、科研和生产中,有不可替代的作用,在材料断裂原因的分析、事故原因的分析以及工艺合理性的判定等方面是一个强有力的手段。3.2.直接观察原始表面它能够直接观察直径100mm,高50mm,或更大尺寸的试样,对试样的形状没有任何限制,粗糙表面也能观察,这便免除了制备样品的麻烦,而且能真实观察试样本身物质成分不同的衬度(背反射电子象)。3.3.观察厚试样其在观察厚试样时,能得到高的分辨率和最真实的形貌。扫描电子显微的分辨率介于光学显微镜和透射电子显微镜之间,但在对厚块试样的观察进行比较时,因为在透射电子显微镜中还要采用复膜方法,而复膜的分辨率通常只能达到10nm,且观察的不是试样本身。因此,用扫描电镜观察厚块试样更有利,更能得到真实的试样表面资料。
3.4.观察各个区域的细节试样在样品室中可动的范围非常大,其他方式显微镜的工作距离通常只有2-3cm,故实际上只许可试样在两度空间内运动,但在扫描电镜中则不同。由于工作距离大(可大于20mm)。焦深大(比透射电子显微镜大10倍)。样品室的空间也大。因此,可以让试样在三度空间内有6个自由度运动(即三度空间平移、三度空间旋转)。且可动范围大,这对观察不规则形状试样的各个区域带来极大的方便。3.5.大视场低放大倍数观察用扫描电镜观察试样的视场大。在扫描电镜中,能同时观察试样的视场范围F由下式来确定:F=L/M式中 F——视场范围;M——观察时的放大倍数;L——显像管的荧光屏尺寸。若扫描电镜采用30cm(12英寸)的显像管,放大倍数15倍时,其视场范围可达20mm,大视场、低倍数观察样品的形貌对有些领域是很必要的,如复合材料表面裂纹观察。从高到低倍的连续观察 放大倍数的可变范围很宽,且不用经常对焦。扫描电镜的放大倍数范围很宽(从5到20万倍连续可调),且一次聚焦好后即可从高倍到低倍、从低倍到高倍连续观察,不用重新聚焦,这对进行事故分析特别方便。3.6.进行动态观察在扫描电镜中,成象的信息主要是电子信息,根据近代的电子工业技术水平,即使高速变化的电子信息,也能毫不困难的及时接收、处理和储存,故可进行一些动态过程的观察,如果在样品室内装有加热、冷却、弯曲、拉伸和离子刻蚀等附件,则可以通过电视装置,观察相变、断裂等动态的变化过程。3.7.从形貌获得资料在扫描电镜中,不仅可以利用入射电子和试样相互作用产生各种信息来成象,而且可以通过信号处理方法,获得多种图象的特殊显示方法,还可以从试样的表面形貌获得多方面资料。因为扫描电子象不是同时记录的,它是分解为近百万个逐次依此记录构成的。因而使得扫描电镜除了观察表面形貌外还能进行成分和元素的分析,以及通过电子通道花样进行结晶学分析,选区尺寸可以从10μm到3
扫描电镜在研究复合材料中的应用
扫描电镜是利用细聚焦电子束在样品表面扫描时激发出来的各种物理信号来调制成像的。扫描电镜是一种多功能的仪器、具有很多优越的性能、是用途最为广泛的一种仪器,它具有很高的分辨率。是复合材料研究中常用的分析测试仪器。
1扫描电镜
1.1扫描电镜的发展
扫描电镜的设计思想早在1935年便已提出,1942年在实验室制成第一台扫描电镜,但因受各种技术条件的限制,进展一直很慢。 1965年,在各项基础技术有了很大进展的前提下才在英国诞生了第一台实用化的商品仪器。此后,荷兰、美国、西德也相继研制出各种型号的扫描电镜,日本二战后在美国的支持下生产出扫描电镜,中国则在20世纪70年代生产出自己的扫描电镜。前期近20年,扫描电镜主要是在提高分辨率方面取得了较大进展。80年代末期,各厂家的扫描电镜的二次电子像分辨率均已达到4.5nm。在提高分辨率方面各厂家主要采取了如下措施: (1)降低透镜球像差系数,以获得小束斑;(2)增强照明源即提高电子枪亮度(如采用LaB6或场发射电子枪);(3)提高真空度和检测系统的接收效率;(4)尽可能减小外界振动干扰。目前,采用钨灯丝电子枪扫描电镜的分辨率最高可以达到3.0nm;采用场发射电子枪扫描电镜的分辨率可达1nm。
颗粒表面特性分析仪适用于在非破坏的条件下连续监测悬浮液状态下颗粒与溶剂之间的表面化学、亲和性、润湿性以及颗粒的比表面积。
对于粉体(浆料,粉料)的分散性,稳定性,亲和性以及比表面积的分析测试快速有效准确的测量手段。
1. 悬浮液体系颗唯芹拿粒比表面积
2. 粒子分散性、稳定性
3. 颗粒与介质之间亲和性
4. 粉体质量控制、分散工艺研究
试用范围如下:
1、颗粒:SiO2、SiC、ZnO、Al2O3、BaCO3、石墨烯、活性炭、炭黑等一百多种;
2、悬浮体系溶剂类型:水、乙醇、丁酮、甲苯等各类含H质子溶剂。
应用领域:
1)尖端制陶术:湿式制程、加工工艺改善, 分散性的质控和研发
2)纳米科技:纳米粒子表面的化学状态, 如: 吸附和脱附作用, 比表面积的变化 等
3)电子材料:浓稠状浆料和研磨液 (CMP) 的开发及品管
4)墨水:碳黑、颜料分散, 最首纳适研磨条件, 表面亲和性及化学和物理状态
5)能源:电池, 太阳能板等的碳黑, 纳米碳管和浆料的分散, 粒子表面的指搭化学和物理状态
6)制药:API湿润性、亲和性及吸水性的差异
7)其他: 全部的浓稠分散悬浊液体, 纳米纤维, 纳米碳等.
A.元素分析仪作为一种实验室常规仪器,可同时对有机的固体、高挥发性和敏感性物质中C、H、O、N、Cl、Br等元素的含量进行定量分析测定,故A正确; B.红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器不,同官能团吸收谱图不同,故可根据红外光谱仪可以确定物质中是否存在某些有机原子团,故B正确; C.原子吸收光谱是基于气态桐猛搜的基态原子外层电子对紫外光和可见光范围的相对局历应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,故C正确; D.614C的放知哪射性可用于考古断代,故D错误;故选D.
sem分析仪的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于sem分析什么意思、sem分析仪的信息别忘了在云尚网络www.ysfad.net进行查找喔。
发表评论
暂时没有评论,来抢沙发吧~