消费者数据分析网站(消费者行为数据调查分析报告)

skyadmin 27 2023-03-31

本文目录一览:

国外电商网站怎么分析消费者数据

摘自:YiShop电商系统

要构建电商数据分析的基本指标体系,主要分为8个类指标

1.总体运营指标:从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。

2.网站流量指标:即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析等等。

3.销售转化指标:分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。

4. 客户价值指标:这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。

5.商品类指标:主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售,有点像啤酒喝尿布的故事。

6. 市场营销活动指标,主要监控某次活动给电商网站带来的效果,以及监控广告的投放指标。

7. 风控类指标:分析卖家评论,以及投诉情况,发现问题,改正问题

8. 市场竞争指标:主要分析市场份额以及网站排名,进一步进行调整

以上总共从8个方面来阐述如何对电商平台进行数据分析,当然,具体问题具体分析,每个公司的侧重点也有所差异,所以如何分析还需因地制宜。

第一篇数据分析项目实战:用户消费行为分析

本篇文章以模仿为主, 利用pandas进行数据处理 ,分析用户消费行为。数据来源CDNow网站的用户购买明细。一共有用户ID,购买日期,购买数量,购买金额四个字段。

分析步骤

第一部分:数据类型的处理—字段的清洗

缺失值的处理、数据类型的转化

第二部分:按月数据分析

每月的消费总金额、每月的消费次数、每月的产品购买量、每月的消费人数

第三部分:用户个体消费数据分析

用户消费金额和消费次数的描述统计、用户消费金额和消费次数的散点图、用户消费金额的分布图(二八法则)、用户消费次数的分布图

、用户累计消费金额的占比

第四部分:用户消费行为分析

用户第一次消费时间、用户最后一次消费时间、新老客消费比、用户分层、用户购买周期、用户生命周期。

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from datetime import datetime

%matplotlib inline

plt.style.use('ggplot')

加载包和数据,文件是txt,用read_table方法打开,因为原始数据不包含表头,所以需要赋予。字符串是空格分割,用\s+表示匹配任意空白符。

一般csv的数据分隔是以逗号的形式,但是这份来源于网上的数据比价特殊,它是通过多个空格来进行分隔

columns = ['user_id','order_dt','order_products','order_amount']

df = pd.read_table("CDNOW_master.txt",names = columns,sep = '\s+')

列字段的含义:

user_id:用户ID

order_dt:购买日期

order_products:购买产品数

order_amount:购买金额

消费行业或者是电商行业一般是通过订单数,订单额,购买日期,用户ID这四个字段来分析的。基本上这四个字段就可以进行很丰富的分析。

观察数据,判断数据是否正常识别。值得注意的是一个用户可能在一天内购买多次,用户ID为2的用户在1月12日买了两次,这个细节不要遗漏。

查看数据类型、数据是否存在空值;原数据没有空值,很干净的数据。接下来我们要将时间的数据类型转化。

当利用pandas进行数据处理的时候,经常会遇见数据类型的问题,当拿到数据的时候,首先要确定拿到的是正确的数据类型,如果数据类型不正确需要进行数据类型的转化,再进行数据处理。附: 常见pandas数据类型转化

用户平均每笔订单购买2.4个商品,标准差在2.3,稍稍具有波动性。中位数在2个商品,75分位数在3个商品,说明绝大部分订单的购买量都不多。最大值在99个,数字比较高。购买金额的情况差不多,大部分订单都集中在小额。

一般而言,消费类的数据分布,都是长尾形态。大部分用户都是小额,然而小部分用户贡献了收入的大头,俗称二八。

数据类型的转化

df['order_dt'] = pd.to_datetime(df.order_dt,format = '%Y%m%d') #Y四位数的日期部分,y表示两位数的日期部分

df['month'] = df.order_dt.values.astype('datetime64[M]') 

到目前为止,我们已经把数据类型处理成我们想要的类型了。我们通过四个字段及衍生字段就可以进行后续的分析了。

接下来我们用之前清洗好的字段进行数据分析。从用户方向、订单方向、消费趋势等进行分析。

1、消费趋势的分析

每月的消费总金额

每月的消费次数

每月的产品购买量

每月的消费人数

目的:了解这批数据的波动形式。

01-每月消费总金额

grouped_month = df.groupby('month')

order_month_amount = grouped_month.order_amount.sum()

order_month_amount.head()

用groupby创建一个新的对象。这里要观察消费总金额,需要将order_amount求和

按月统计每个月的CD消费总金额。从图中可以看到,前几个月的销量非常高涨。数据比较异常。而后期的销量则很平稳。

前三个月的消费订单数在10000笔左右,后续月份的消费人数则在2500人左右。

每月的产品购买量一样呈现早期购买量多,后期平稳下降的趋势。为什么会呈现这个原因呢?我们假设是用户身上出了问题,早期时间段的用户中有异常值,第二假设是各类促销营销,但这里只有消费数据,所以无法判断。

04-每月的消费人数(去重)

方法一:df.groupby('month').user_id.apply(lambdax:len(x.drop_duplicates())).plot()

方法二:df.groupby('month').user_id.nunique().plot()

每月的消费人数小于每月的消费次数,但是区别不大。前三个月每月的消费人数在8000—10000之间,后续月份,平均消费人数在2000不到。一样是前期消费人数多,后期平稳下降的趋势。

数据透视表是更简单的方法,有了这个之后大家用里面的数据进行作图也是OK的,而且更加的快捷,所以pandas到后面的话解决一个问题会想到两到三个方法。具体看那个方便,那个简单。

之前我们维度都是月,来看的是趋势。有时候我们也需要看个体来看这个人的消费能力如何,这里划分了五个方向如下:

用户消费金额和消费次数的描述统计

用户消费金额和消费次数的散点图

用户消费金额的分布图(二八法则)

用户消费次数的分布图

用户累计消费金额的占比(百分之多少的用户占了百分之多少的消费额)

从用户角度看,每位用户平均购买7张CD,最多的用户购买了1033张。用户的平均消费金额(客单价)100元,标准差是240,结合分位数和最大值看,平均值才和75分位接近,肯定存在小部分的高额消费用户。

如果大家能够接触到消费、金融和钱相关的数据,基本上都符合二八法则,小部分的用户占了消费的大头

绘制用户的散点图,用户比较健康而且规律性很强。因为这是CD网站的销售数据,商品比较单一,金额和商品量的关系也因此呈线性,没几个离群点。

从上图直方图可知,大部分用户的消费能力确实不高,绝大部分呈现集中在很低的消费档次。高消费用户在图上几乎看不到,这也确实符合消费行为的行业规律。

虽然有极致干扰了我们的数据,但是大部分的用户还是集中在比较低的而消费档次。

到目前为止关于用户的消费行为有一个大概的了解

按用户消费金额进行升序排序,由图可知50%的用户仅贡献了15%的销售额度。而排名前5000的用户就贡献了60%的消费额。也就是说我们只要维护了这5000个用户就可以把业绩KPI完成60%,如果能把5000个用户运营的更好就可以占比70%—80%之间。

求月份的最小值,即用户消费行为中的第一次消费时间。所有用户的第一次消费都集中在前三个月.

观察用户的最后一次消费时间。用户最后一次消费比第一次消费分布广,大部分最后一次消费集中在前三个月,说明很多客户购买一次就不再进行购买。随着时间的增长,最后一次购买数也在递增,消费呈现流失上升的情况,用户忠诚度在慢慢下降。

user_id为1的用户第一次消费时间和最后一次消费时间为19970101,说明他只消费了一次

有一半的用户只消费了一次

order_products求的是消费产品数,把它替换成消费次数也是可以,但是因为我们这里消费次数是比较固定的,所以使用消费产品数的维度。

R表示客户最近一次交易时间的间隔,客户在最近一段时间内交易的金额。F表示客户在最近一段时间内交易的次数,F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。M表示客户在最近一段时间内交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。

用户分层,这里使用平均数

M不同层次客户的消费累计金额,重要保持客户的累计消费金额最高

不同层次用户的消费人数,之前重要保持客户的累计消费金额最高,这里重要保持客户的消费人数排名第二,但离一般挽留用户差距比较大,一般挽留用户有14074人,重要保持客户4554人

从RFM分层可知,大部分用户为重要保持客户,但是这是由于极致的影响,所以RFM的划分应该尽量以业务为准。尽量用小部分的用户覆盖大部分的额度,不要为了数据好看划分等级。

RFM是人工使用象限法把数据划分为几个立方体,立方体对应相应的标签,我们可以把标签运用到业务层面上。比如重要保持客户贡献金额最多159203.62,我们如何与业务方配合把数据提高或者维护;而重要发展客户和重要挽留客户他们有一段时间没有消费了,我们如何把他们拉回来

用户每个月的消费次数,对于生命周期的划分只需要知道用户本月是否消费,消费次数在这里并不重要,需要将模型进行简化

使用数据透视表,需要明确获得什么结果。有些用户在某月没有进行过消费,会用NaA表示,这里用filna填充。

对于尾部数据,user_id2W+的数据是有问题的,因为从实际的业务场景上说,他们一月和二月都没有注册三月份才是他们第一次消费。透视会把他们一月和二月的数据补上为0,这里面需要进行判断将第一次消费作为生命周期的起始,不能从一月份开始就粗略的计算

主要分为两部分的判断,以本月是否消费为界。本月没有消费,还要额外判断他是不是新客,因为部分用户是3月份才消费成为新客,那么在1、2月份他连新客都不是,用unreg表示。如果是老客,则为unactive

本月若没有消费,需要判断是不是第一次消费,上一个时间窗口有没有消费。可以多调试几次理顺里面的逻辑关系,对用户进行分层。

《业内主流写法》

这里用户生命周期的状态变化是用数据透视表一次性做的,但在实际业务场景中我们可能用SQL把它作为中间表来处理。我们有了明细表,会通过明细表来计算出状态表;也就是它的数据上个月是什么样的情况得出来,比如上个月是新用户或者回流用户,我们直接用上个月的状态left join本月的状态。直接用SQL进行对比

可以用pandas将每个月的状态计算出来,不是逐行而是月份计算,先算出一月份哪些用户是新购买的,然后判断二月份是否购买,两者left join

由上表可知,每月用户的消费状态变化。活跃用户、持续消费的用户对应的是消费运营质量。回流用户,之前不消费本月才消费对应的是唤回运营。不活跃的用户对应的是流失

这里可以针对业务模型下个定义:流失用户增加,回流用户正在减少

user_id 1为空值,表示该客户只购买过一个订单。user_id为2 的用户第二笔订单与第二笔订单在同一天购买

订单周期呈指数分布,用户的平均购买周期是68天,绝大部分用户的购买周期都低于100天。

数据偏移比较大,中位数是0天也就是超过50%的用户他的生命周期是0天只购买了一次,但是平均生命周期有134天,最大值是544天

用户的生命周期受只购买一次的用户影响比较厉害(可以排除),用户均消费134天, 中位数仅0天

筛选出lifetime0,既排除了仅消费了一次那些人,有不少用户生命周期靠拢在0天,部分质量差的用户虽然消费了两次,但是任然无法持续,在用户首次消费30天内应该尽量引导。少部分用户集中在50—300天,属于普通型的生命周期。高质量用户的生命周期,集中在400天以后,这属于忠诚用户。

applymap针对DataFrame里的所有数据。用lambda进行判断,因为这里设计了多个结果,所以要两个if else

用sum和count相除即可计算出复购率。因为这两个函数都会忽略NAN,而NAN是没有消费的用户,count不论是0还是1都会统计,所以是总的消费用户数,而sum求何计算了两次以上的消费用户。这里用了比较巧妙的替代法计算复购率,SQL中也可以用。

图上可以看出复购率在早期,因为大量新用户加入的关系,新客的复购率并不高,譬如1月新客们的复购率只有6%左右。而在后期,这时的用户都是大浪淘沙剩下的老客户,复购率比较稳定,在20%左右.

单看新客和老客,复购率有三倍左右的差距

接下来计算回购率。回购率是某一个时间窗口内消费的用户,在下一个时间窗口人就消费的占比。我1月消费用户1000,他们中有300个2月依然消费,回购率是30%

0代表当月消费过次月没有消费过,1代表当月消费过次月依然消费

新建一个判断函数。data是输入数据,既用户在18个月内是否消费的记录,status是空列表,后续用来保存用户是否回购的字段。因为有18个月,所以每个月都要进行一次判断,需要用到循环。if的主要逻辑是,如果用户本月进行过消费,且下月消费过,记为1,没有消费过是0.本月若没有进行过消费,为NAN,后续的统计中进行排除。apply函数应用在所有行上,获得想要的结果。

最后计算和复购率大同小异,用count和sum求出,从图中可以看出,用户的回购率高于复购,约在30%左右,和老客户差异不大。从回购率和复购率综合分析可以得出,新客的整体质量低于老客,老客的忠诚度(回购率)表现较好,消费频次稍次,这是CDNow网站的用户消费特征。

CD网站销售数据分析

本篇分析基于CDNow网站18个月的CD销售数据。数据来源于互联网(txt格式)一共有用户ID,购买日期,购买数量,购买金额四个字段。本次分析侧重于通过历史消费数据分析,总结用户流失原因;依据用户消费行为将其划分为不同类别的用户,从而进行个性化管理,以提高利润。

1、用户消费趋势的分析(按月)

2、用户个体消费分析

3.用户消费行为分析

数据读取

观察以上数据,发现没有字段名,需要手动添加

通过上述信息可以知道数据十分干净,没有空行等,但是order_dt应该为日期时间类型,这里却是int类型,需要完成数据类型转换

从销量方面看,平均每笔订单购买2.4张cd,标准差为2.33,稍有波动,购买量上四分位数为3张,说明大部分用户订单购买量不大,大部分集中在3张以下;消费金额呈现类似趋势,单笔订单最大值为99,说明有少部分狂热打榜粉丝,一般消费类的数据都是呈现长尾形态,即大部分用户都是小额消费者,小部分用户贡献了主要的消费收益,俗称二八理论

先做每月消费总额和订单量的变化图

前3个月消费金额数据为最高峰,后续较为平稳,有轻微下降趋势

前3个月订单量都在1万左右,后续订单量急剧下滑,订单量维持在2500左右,猜测前期应为粉丝打榜或者促销活动释放了顾客购买力

每月用户量稍稍复杂,主要是计算每个月下过订单的用户量,所以需要去重

前三个月用户量维持在9000左右,后续购买用户数总体上呈现缓慢下降的趋势,用户量维持在2000左右

前3个月用户平均消费金额在40元左右,后续有所上升,用户平均消费金额在[46,56]

平均消费次数总体上呈现上升趋势,前3个月平均消费次数在1.2次上下,后续在1.35上下波动,说明cd消费大部分是一锤子买卖,狂热粉丝消费极少,顾客消费较为理性

从用户角度看,单个用户平均购买量为7,中位数为3,说明小部分用户购买了大量CD;

用户平均消费金额为106元,消费总额中位数为43,判断同上,存在小部分的高额消费人群。

基本上消费、金融等与钱相关的都符合二八法则

用户比较健康,且规律性比较强,cd网站产品单一,价格较统一,消费金额与消费产品数量呈现线性关系

大部分用户集中在低价领域,消费能力不高,高档用户几乎没有出现,符合消费市场行业规律

可以用中心极限低定理计算出95%的消费者消费金额在[0,856]之间

从图上看大部分用户只消费1次两次,高频消费者很少这也满足cd消费市场行业规律

按用户消费金额进行升序排序,由图可知50%的用户仅贡献了15%的销售额度。而排名前5000的用户就贡献了60%的消费额。也就是说我们只要维护了这5000个用户就可以把业绩KPI完成60%,如果能把5000个用户运营的更好就可以占比70%—80%之间。

用户首次消费集中在前3个月,2月10日至2月25日有较为强烈的波动

观察用户的最后一次消费时间。用户最后一次消费比第一次消费分布广,大部分最后一次消费集中在前三个月,说明很多客户购买一次就不再进行购买。随着时间的增长,最后一次购买数也在递增,消费呈现流失上升的情况,用户忠诚度在慢慢下降

大部分人值消费了一次,买一次就跑

只有前三个月有新客户,后续全是原有老客消费

1)RFM模型

R:(Recency)最后一次消费时间的度量,数值越大越好(这里用距离所有用户最后一次消费时间来代替,越小越好)

F:(Frequency)消费的次数(本数据消费次数比较集中,用总商品数代替),数值越大越好

M:(Monetary)消费的总金额,数值越大越好

但这里平均数容易受到极值影响,所以,可以换成中位数,或者其他自定义的数值

绝大部分消费是由重要保持客户产生的,维持好这部分客户,完成kpi有极大的帮助

一般挽留客户客户基数较大,可对这部分客户进行挽留以保持高额增长

2)用户分层:新客、回流、活跃、流失

用户每个月的消费次数,对于生命周期的划分只需要知道用户本月是否消费,消费次数在这里并不重要,需要将模型进行简化

使用数据透视表,需要明确获得什么结果。有些用户在某月没有进行过消费,会用NaA表示,这里用fillna填充。

对于尾部数据,user_id为2W+的数据是有问题的,因为从实际的业务场景上说,他们一月和二月都没有注册三月份才是他们第一次消费。透视会把他们一月和二月的数据补上为0,这里面需要进行判断将第一次消费作为生命周期的起始,不能从一月份开始就粗略的计算

active:活跃用户越来越少,说明运营的质量在降低,可能是用户体验不好、也可能是竞争加剧;

new:新用户前三个月之后就显著降低,说明市场和渠道部门需要加大拉新;

return:回流客户多,说明唤回运营(促销)起效;

unactive:不活跃用户正在增加,说明存在用户流失(也可能因为CD购买周期较长的原因

大学生消费水平数据在哪查免费的

FineBI。

通过数据分析免费工具FineBI对大学生消费数据统计分析,找出一些可能影响大学生消费的因素,这些因素可能包括家庭情况,家庭月生活费等。

消费水平是指一定时期内消费者用于满足自身日常生活费用各项支出的总和,按消费者的不同,有个人消费支出、家庭消费支出和社会公共消费支出;按消费物品不同,有商品性消费支出,如吃、穿、用、住、行等项和非商品性消费支出,如医疗卫生、文化教育、体育娱乐等。

衡量消费水平,主要以消费对象的数量、品种、结构为依据,不能视为消费状况的综合的体现,他们认为消费的最终结果应列入消费效果问题予以考察。

从支付宝数据分析网购消费者行为

从支付宝数据分析网购消费者行为

没有消费者,交易便无法成立,对于商家而言,关于消费者的数据至关重要。曾经,获取一份消费者报告需要通过漫长而周密的调研,而随着电商的不断发展,数据量级不断增大,服务于商家的各种数据产品应运而生,获取消费者数据的方式变得更便捷,成本也更低。

这其中,支付宝数据是所有数据中最大的金矿。首先,支付宝数据基于真实的消费数据,或者说是基于每一笔真实交易产生的数据,相比较其他的消费者调研 数据更为可靠;其次,支付宝数据不仅仅包括淘宝,其用户群体更为广阔,可以说包含全领域电商的方方面面,其数据之丰富,是其他任何公司无可比拟的。

因此,《天下网商·经理人》、天下网商数据中心联合支付宝数据罗盘,从淘外商户数据入手,带来真实的支付宝淘外消费者网购数据报告,以飨读者。

特别说明的是,这些数据样本来自于2012年支付宝支持的除淘宝之外的电商网站,具有极高的参考价值。

网购消费者人口特点

1.网购消费者年龄分布:年轻人是网购主力

淘外电商网站30岁以下网购消费者占比超过六成,40岁以上网购消费者占比10%左右,可以看出目前网购消费者总体较为年轻。

2. 网购消费者地域分布:网购向三四线城市普及

目前淘外电商网站的消费者主要分布在一二线城市,占比达到67.9%。另据支付宝年度对账单显示,2012年四线城市的网上支付用户数增长64%,网上支付金额增长68%,均超过一二线城市。网购已经从发达地区开始向次发达地区逐渐普及,小城市的发展速度不容小视。

淘外电商网站消费者人数最多的省份是广东,上海、江苏、浙江、北京也进入前五。而根据CNNIC数据,2012年上海网民人数绝对值排名为全国第 13位,综合支付宝数据,可见上海网购渗透率非常高。网购消费者分布前五省份占比合计超五成,前十省份占比合计七成左右,可见网购消费者的地区集中度较 高。

网购消费者行为特点

1.购物网龄分布:四成以上消费者购物网龄在2年以下

淘外电商网站上四成以上消费者购物网龄在2年以下,其中2012年新增消费者占比,即购物网龄1年以下消费者占比达到23.4%,新增消费者较多。

2.购买频次:大多数消费者每个月仅网购一次

七成淘外电商网站消费者每个月仅网购一次,每个月网购3次以上消费者比例不足15%。对电商来说,增加消费者网购活跃度是一个重要问题。

3.网购时间分布: 消费者在工作日网购的热情更高

消费者在工作日网购的热情更高,周末网购的消费者明显减少。由于在周末或者节假日的时候,消费者可以更为自由地安排自己的时间,购物场景可能转移到线下,而在工作日,消费者没有大量的时间外出购物,所以更倾向于选择方便快捷的网购。

消费者网购时间与作息时间一致,购物时段主要集中在白天上班时间和晚上在家时间,其中白天上班时间购物热情会比晚上下班在家时间高,上下班途中和吃饭时间购物热情略有回落。商家可根据网购时间分布调整战术,更好地满足消费者的网购需求。

4.客单价分布:七成以上消费者网购客单价在200元以下

淘外电商网站客单价1000元以上的消费者占比达到9%,但是七成以上消费者网购客单价都在200元以下,可见,目前大多数消费者在网购中倾向于购买便宜的物品。

5.购物偏好:服装和饰品类目是所有人的最爱

不论男女,消费者最爱购买的前两位类目都是服装、饰品。家居用品是女性最爱购买的第三位类目,男性的第五位,可见女人比男人更爱买家居用品。3C数码是女性最爱购买的第五位类目,男性的第四位,可见男人比女人更爱买数码产品。

各年龄段购物偏好前两位的都是服装和饰品,但前五位购物偏好随着消费者年龄的增长会有一定变化。如家居用品是24岁以下消费者偏爱购买的第五位类 目,而从25岁开始,家居用品提升至第三位;对30~39岁年龄段的消费者来说,母婴用品进入了前五位,这个数据反映了网购人群中大多数人选择了晚婚晚 育。40~49岁消费者关注运动品类较多,运动进入这个年龄段购物偏好前五位。60岁以上消费者热衷于从网上购买食品,食品跻身其购物偏好前五位,网购食 品为没有年轻人行动方便的老年人提供了生活的便利。

哪些网站查询汽车销量数据比较方便?

海豚魔方汽车数据分析平台,一家专注于汽车数据服务的线上数据体验产品,向优秀的汽车行业从业人员提供包括汽车销量、汽车保有量、汽车成交价,新能源车数据等汽车行业数据查询与分析服务。

看过不少平台的数据,大家都说自己的数据是最准的,但是每一家的数据都不同,主要得看你用这个数据来做什么,这涉及到一个名词,那就是统计口径。

比如中汽协,他们的统计口径是批发量,是厂商自行上报的,反映的是厂家批发给经销商的车辆数据;乘联会,他们的统计口径和中汽协的一样,也是批发量。

还有统计开票数的,就是根据每台车的发票来统计汽车销量,这个反映的销量就是实打实的经销商到消费者的销量,也就是零售端销量,在达示数据平台上可以查到。

另外还有一个是统计上险数量的,也就是交强险,这一口径反映的销量数据也比较客观了,因为每台车都需要上交强险才能上路的,据我了解,达示数据平台上也能查到。

关于消费者数据分析网站和消费者行为数据调查分析报告的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注云尚网络www.ysfad.net。

上一篇:品牌营销策略案例(品牌营销优秀案例)
下一篇:最有效的广告宣传方式(微商怎样让客源主动加你)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~