优化算法(多目标优化算法)
本文目录一览:
- 1、优化算法是什么?
- 2、优化算法是什么呢?
- 3、想知道优化算法是什么?
- 4、优化算法总结
- 5、优化算法
优化算法是什么?
智能优化算法是一种启发式优化算法,包括遗传算法、蚁群算法、禁忌搜索算法、模拟退火算法、粒子群算法等。·智能优化算法一般是针对具体问题设计相关的算法,理论要求弱,技术性强。一般,我们会把智能算法与最优化算法进行比较,相比之下,智能算法速度快,应用性强。
群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。
各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。
扩展资料:
优化算法有很多,关键是针对不同的优化问题,例如可行解变量的取值(连续还是离散)、目标函数和约束条件的复杂程度(线性还是非线性)等,应用不同的算法。 对于连续和线性等较简单的问题,可以选择一些经典算法,例如梯度、Hessian 矩阵、拉格朗日乘数、单纯形法、梯度下降法等;而对于更复杂的问题,则可考虑用一些智能优化算法。
参考资料来源:百度百科-算法优化
优化算法是什么呢?
优化算法是指对算法的有关性能进行优化,如时间复杂度、空间复杂度、正确性、健壮性。
大数据时代到来,算法要处理数据的数量级也越来越大以及处理问题的场景千变万化。为了增强算法的处理问题的能力,对算法进行优化是必不可少的。算法优化一般是对算法结构和收敛性进行优化。
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
遗传算法
遗传算法也是受自然科学的启发。这类算法的运行过程是先随机生成一组解,称之为种群。在优化过程中的每一步,算法会计算整个种群的成本函数,从而得到一个有关题解的排序,在对题解排序之后,一个新的种群----称之为下一代就被创建出来了。首先,我们将当前种群中位于最顶端的题解加入其所在的新种群中,称之为精英选拔法。新种群中的余下部分是由修改最优解后形成的全新解组成。
常用的有两种修改题解的方法。其中一种称为变异,其做法是对一个既有解进行微小的、简单的、随机的改变;修改题解的另一种方法称为交叉或配对,这种方法是选取最优解种的两个解,然后将它们按某种方式进行组合。尔后,这一过程会一直重复进行,直到达到指定的迭代次数,或者连续经过数代后题解都没有改善时停止。
想知道优化算法是什么?
优化算法是通过改善计算方式来最小化或最大化损失函数E(x)。模型内部有些参数是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数就形成了损失函数E(x),比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练神经网络模型时起到主要作用。
优化算法分的分类
一阶优化算法是使用各参数的梯度值来最小化或最大化损失函数E(x),最常用的一阶优化算法是梯度下降。函数梯度导数dy/dx的多变量表达式,用来表示y相对于x的瞬时变化率。
二阶优化算法是使用了二阶导数也叫做Hessian方法来最小化或最大化损失函数,由于二阶导数的计算成本很高,所以这种方法并没有广泛使用。
优化算法总结
本文介绍一下机器学习和深度学习中常用的优化算法和优化器以及一些其他我知道的优化算法,部分算法我也没有搞懂,就先记录下来以后慢慢研究吧.*_*.
1.梯度下降算法(Gradient Descent)
梯度下降法可以参考我另一篇文章 机器学习-线性回归 里的讲解,这里就不在重复叙述.这里需要强调一下,深度学习里常用的SGD,翻译过来是随机梯度下降,但是实质是mini-batch梯度下降(mini-batch-gd),或者说是两者的结合更准确一些.
SGD的优点是,算法简单,计算量小,在函数为凸函数时可以找到全局最优解.所以是最常用的优化算法.缺点是如果函数不是凸函数的话,很容易进入到局部最优解而无法跳出来.同时SGD在选择学习率上也是比较困难的.
2.牛顿法
牛顿法和拟牛顿法都是求解无约束最优化问题的常用方法,其中牛顿法是迭代算法,每一步需要求解目标函数的海森矩阵的逆矩阵,计算比较复杂.
牛顿法在求解方程根的思想:在二维情况下,迭代的寻找某一点x,寻找方法是随机一个初始点x_0,目标函数在该点x_0的切线与x坐标轴的交点就是下一个x点,也就是x_1.不断迭代寻找x.其中切线的斜率为目标函数在点x_0的导数(梯度),切必过点(x_0,f(x_0)).所以迭代的方程式如图1,为了求该方程的极值点,还需要令其导数等于0,也就是又求了一次导数,所以需要用到f(x)的二阶导数.
在最优化的问题中,牛顿法提供了一种求解的办法. 假设任务是优化一个目标函数f, 求函数ff的极大极小问题, 可以转化为求解函数f导数等于0的问题, 这样求可以把优化问题看成方程求解问题(f的导数等于0). 剩下的问题就和牛顿法求解方程根的思想很相似了.
目标函数的泰勒展开式:
化简后:
这样就得到了与图1相似的公式,这里是二维的,在多维空间上,求二阶导数就是求海森矩阵,因为是分母,所以还需要求海森矩阵的逆矩阵.
牛顿法和SGD的区别:
牛顿法是二阶求导,SGD是一阶求导,所以牛顿法要收敛的更快一些.SGD只考虑当前情况下梯度下降最快的方向,而牛顿法不仅考虑当前梯度下降最快,还有考虑下一步下降最快的方向.
牛顿法的优点是二阶求导下降速度快,但是因为是迭代算法,每一步都需要求解海森矩阵的逆矩阵,所以计算复杂.
3.拟牛顿法(没搞懂,待定)
考虑到牛顿法计算海森矩阵比较麻烦,所以它使用正定矩阵来代替海森矩阵的逆矩阵,从而简化了计算过程.
常用的拟牛顿法有DFP算法和BFGS算法.
4.共轭梯度法(Conjugate Gradient)
共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法计算海森矩阵并求逆的缺点.共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一.
5.拉格朗日法
参考SVM里的讲解 机器学习-SVM
6.动量优化法(Momentum)
动量优化法主要是在SGD的基础上,加入了历史的梯度更新信息或者说是加入了速度更新.SGD虽然是很流行的优化算法,但是其学习过程很慢,因为总是以同样的步长沿着梯度下降的方向.所以动量是为了加速学习的方法.
其中第一行的减号部分是计算当前的梯度,第一行是根据梯度更新速度v,而α是新引进的参数,在实践中,α的一般取值为 0.5,0.9 和 0.99.和学习率 一样,α 也会随着时间不断调整.一般初始值是一个较小的值,随后会慢慢变大.
7.Nesterov加速梯度(NAG, Nesterov accelerated gradient)
NAG是在动量优化算法的基础上又进行了改进.根据下图可以看出,Nesterov 动量和标准动量之间的区别体现在梯度计算上, Nesterov 动量中,梯度计算在施加当前速度之后.因此,Nesterov 动量可以解释为往标准动量方法中添加了一个校正因子
8.AdaGrad算法
AdaGrad算法,自适应优化算法的一种,独立地适应所有模型参数的学习率,缩放每个参数反比于其所有梯度历史平均值总和的平方根.具有代价函数最大梯度的参数相应地有个快速下降的学习率,而具有小梯度的参数在学习率上有相对较小的下降.通俗一点的讲,就是根据实际情况更改学习率,比如模型快要收敛的时候,学习率步长就会小一点,防止跳出最优解.
其中g是梯度,第一行的分母是计算累计梯度的平方根, 是为了防止分母为0加上的极小常数项,α是学习率.
Adagrad的主要优点是不需要人为的调节学习率,它可以自动调节.但是依然需要设置一个初始的全局学习率.缺点是随着迭代次数增多,学习率会越来越小,最终会趋近于0.
9.RMSProp算法
RMSProp修改 AdaGrad 以在非凸设定下效果更好,改变梯度积累为指数加权的移动平均.AdaGrad旨在应用于凸问题时快速收敛.
10.AdaDelta算法
11.Adam算法
Adam是Momentum和RMSprop的结合体,也就是带动量的自适应优化算法.
12.Nadam算法
13.模拟退火算法
14.蚁群算法
15.遗传算法
动量是为了加快学习速度,而自适应是为了加快收敛速度,注意学习速度快不一定收敛速度就快,比如步长大学习速度快,但是很容易跳出极值点,在极值点附近波动,很难达到收敛.
未完待定....
参考:
《统计学习方法》 李航 著
《深度学习》 花书
优化算法
SGD算法中的一个关键参数是学习率。之前,我们介绍的SGD使用固定的学习率。在实践中,有必要随着时间的推移逐渐降低学习率,因此我们将第 k 步迭代的学习率记作 ϵ k 。
这是因为SGD中梯度估计引入的噪声源(m 个训练样本的随机采样)并不会在极小点处消失。相比之下,当我们使用批量梯度下降到达极小点时,整个代价函数的真实梯度会变得很小,之后为 0,因此批量梯度下降可以使用固定的学习率。保证SGD收敛的一个充分条件是
若 ϵ 0 太大,学习曲线将会剧烈振荡,代价函数值通常会明显增加。温和的振荡是良好的,容易在训练随机代价函数(例如使用Dropout的代价函数)时出现。如果学习率太小,那么学习过程会很缓慢。如果初始学习率太低,那么学习可能会卡在一个相当高的代价值。通常,就总训练时间和最终代价值而言,最优初始学习率会高于大约迭代 100 次左右后达到最佳效果的学习率。因此,通常最好是检测最早的几轮迭代,选择一个比在效果上表现最佳的学习率更大的学习率,但又不能太大导致严重的震荡。
虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。动量的效果如图8.5所示
受 Nesterov 加速梯度算法 (Nesterov, 1983, 2004) 启发,提出了动量算法的一个变种。这种情况的更新规则如下:
其中参数 α 和 ϵ 发挥了和标准动量方法中类似的作用。Nesterov 动量和标准动量之间的区别体现在梯度计算上。Nesterov 动量中,梯度计算在施加当前速度之后。因此,Nesterov 动量可以解释为往标准动量方法中添加了一个校正因子。完整的Nesterov动量算法如算法3.2所示
初始点能够决定算法是否收敛,有些初始点十分不稳定,使得该算法会遭遇数值困难,并完全失败。当学习收敛时,初始点可以决定学习收敛得多快,以及是否收敛到一个代价高或低的点。此外,差不多代价的点可以具有区别极大的泛化误差,初始点也可以影响泛化。
也许完全确知的唯一特性是初始参数需要在不同单元间 ‘‘破坏对称性’’。如果具有相同激活函数的两个隐藏单元连接到相同的输入,那么这些单元必须具有不同的初始参数。如果它们具有相同的初始参数,然后应用到确定性损失和模型的确定性学习算法将一直以相同的方式更新这两个单元。即使模型或训练算法能够使用随机性为不同的单元计算不同的更新(例如使用Dropout的训练),通常来说,最好还是初始化每个单元使其和其他单元计算不同的函数。这或许有助于确保没有输入模式
丢失在前向传播的零空间中,没有梯度模式丢失在反向传播的零空间中。每个单元计算不同函数的目标促使了参数的随机初始化。我们可以明确地搜索一大组彼此互不相同的基函数,但这经常会导致明显的计算代价。例如,如果我们有和输出一样多的输入,我们可以使用 Gram-Schmidt 正交化于初始的权重矩阵,保证每个单元计算彼此非常不同的函数。在高维空间上使用高熵分布来随机初始化,计算代价小并且不太可能分配单元计算彼此相同的函数。
通常情况下,我们可以为每个单元的偏置设置启发式挑选的常数,仅随机初始化权重。额外的参数(例如用于编码预测条件方差的参数)通常和偏置一样设置为启发式选择的常数。
我们几乎总是初始化模型的权重为高斯或均匀分布中随机抽取的值。高斯或均匀分布的选择似乎不会有很大的差别,但也没有被详尽地研究。然而,初始分布的大小确实对优化过程的结果和网络泛化能力都有很大的影响。
更大的初始权重具有更强的破坏对称性的作用,有助于避免冗余的单元。它们也有助于避免在每层线性成分的前向或反向传播中丢失信号——矩阵中更大的值在矩阵乘法中有更大的输出。如果初始权重太大,那么会在前向传播或反向传播中产生爆炸的值。在循环网络中,很大的权重也可能导致混沌(chaos)(对于输入中很小的扰动非常敏感,导致确定性前向传播过程表现随机)。在一定程度上,梯度爆炸问题可以通过梯度截断来缓解(执行梯度下降步骤之前设置梯度的阈值)。较大的权
重也会产生使得激活函数饱和的值,导致饱和单元的梯度完全丢失。这些竞争因素决定了权重的理想初始大小。
也有助于避免在每层线性成分的前向或反向传播中丢失信号——矩阵中更大的值在矩阵乘法中有更大的输出。如果初始权重太大,那么会在前向传播或反向传播中产生爆炸的值。在循环网络中,很大的权重也可能导致混沌(chaos)(对于输入中很小的扰动非常敏感,导致确定性前向传播过程表现随机)。在一定程度上,梯度爆炸问题可以通过梯度截断来缓解(执行梯度下降步骤之前设置梯度的阈值)。较大的权重也会产生使得激活函数饱和的值,导致饱和单元的梯度完全丢失。这些竞争因素决定了权重的理想初始大小。
有些启发式方法可用于选择权重的初始大小。一种初始化 m 个输入和 n 输出的全连接层的权重的启发式方法是从分布 U(−1/√ m ,
1/√ m ) 中采样权重,而 Glorot and Bengio 建议使用标准初始化
后一种启发式方法初始化所有的层,折衷于使其具有相同激活方差和使其具有相同梯度方差之间。这假设网络是不含非线性的链式矩阵乘法,据此推导得出。现实的神经网络显然会违反这个假设,但很多设计于线性模型的策略在其非线性对应中的效果也不错。
数值范围准则的一个缺点是,设置所有的初始权重具有相同的标准差,例如1/√ m ,会使得层很大时每个单一权重会变得极其小。Martens (2010) 提出了一种被称为稀疏初始化(sparse initialization)的替代方案,每个单元初始化为恰好有 k 个非零权重。这个想法保持该单元输入的总数量独立于输入数目 m,而不使单一权重元素的大小随 m 缩小。稀疏初始化有助于实现单元之间在初始化时更具多样性。但是,获得较大取值的权重也同时被加了很强的先验。因为梯度下降需要很长时间缩小 ‘‘不正确’’ 的大值,这个初始化方案可能会导致某些单元出问题,例如maxout单元有几个过滤器,互相之间必须仔细调整。
Delta-bar-delta 算法 (Jacobs, 1988) 是一个早期的在训练时适应模型参数各自学习率的启发式方法。该方法基于一个很简单的想法,如果损失对于某个给定模型参数的偏导保持相同的符号,那么学习率应该增加。如果对于该参数的偏导变化了符号,那么学习率应减小。当然,这种方法只能应用于全批量优化中。
AdaGrad 算法,如算法8.4所示,独立地适应所有模型参数的学习率,缩放每个参数反比于其所有梯度历史平方值总和的平方根 (Duchi et al., 2011)。具有损失最大偏导的参数相应地有一个快速下降的学习率,而具有小偏导的参数在学习率上有相对较小的下降。净效果是在参数空间中更为平缓的倾斜方向会取得更大的进步。
在凸优化背景中,AdaGrad 算法具有一些令人满意的理论性质。然而,经验上已经发现,对于训练深度神经网络模型而言,从训练开始时积累梯度平方会导致有效学习率过早和过量的减小。AdaGrad在某些深度学习模型上效果不错,但不是全部。
RMSProp 算法 (Hinton, 2012) 修改 AdaGrad 以在非凸设定下效果更好,改变梯度积累为指数加权的移动平均。AdaGrad旨在应用于凸问题时快速收敛。当应用于非凸函数训练神经网络时,学习轨迹可能穿过了很多不同的结构,最终到达一个局部是凸碗的区域。AdaGrad 根据平方梯度的整个历史收缩学习率,可能使得学习率在达到这样的凸结构前就变得太小了。RMSProp 使用指数衰减平均以丢弃遥远过去的历史,使其能够在找到凸碗状结构后快速收敛,它就像一个初始化于该碗状结构的 AdaGrad 算法实例。
RMSProp 的标准形式如算法8.5所示,结合 Nesterov 动量的形式如算法8.6所示。相比于 AdaGrad,使用移动平均引入了一个新的超参数ρ,用来控制移动平均的长度范围。经验上,RMSProp 已被证明是一种有效且实用的深度神经网络优化算法。目前它是深度学习从业者经常采用的优化方法之一。
Adam (Kingma and Ba, 2014) 是另一种学习率自适应的优化算法,最好被看作结合 RMSProp 和具有一些重要区别的动量的变种。首先,在 Adam 中,动量直接并入了梯度一阶矩(指数加权)的估计。将动量加入 RMSProp 最直观的方法是将动量应用于缩放后的梯度。结合缩放的动量使用没有明确的理论动机。其次,Adam 包括偏置修正,修正从原点初始化的一阶矩(动量项)和(非中心的)二阶矩的估计(算法8.7)。RMSProp 也采用了(非中心的)二阶矩估计,然而缺失了修正因子。因此,不像 Adam,RMSProp 二阶矩估计可能在训练初期有很高的偏置。Adam 通常被认为对超参数的选择相当鲁棒,尽管学习率有时需要从建议的默认修改。
目前,最流行并且使用很高的优化算法包括 SGD、具动量的 SGD、RMSProp、具动量的 RMSProp、AdaDelta 和 Adam。

关于优化算法和多目标优化算法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注云尚网络www.ysfad.net。
发表评论




暂时没有评论,来抢沙发吧~